0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Probabilistic system identification of spatial distribution of structural parameter using Bayesian network

 Probabilistic system identification of spatial distribution of structural parameter using Bayesian network
Autor(en): ,
Beitrag für IABSE Congress: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, 21-23 September 2016, veröffentlicht in , S. 431-438
DOI: 10.2749/stockholm.2016.0408
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.19 MB

System identification (SI) is a systematic process to estimate structural parameters by minimizing errors between measured and simulated responses of the structure. Existing SI algorithms have been...
Weiterlesen

Bibliografische Angaben

Autor(en): (Seoul National University, Seoul, Republic of Korea)
(Seoul National University, Seoul, Republic of Korea)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, 21-23 September 2016
Veröffentlicht in:
Seite(n): 431-438 Anzahl der Seiten (im PDF): 8
Seite(n): 431-438
Anzahl der Seiten (im PDF): 8
Jahr: 2016
DOI: 10.2749/stockholm.2016.0408
Abstrakt:

System identification (SI) is a systematic process to estimate structural parameters by minimizing errors between measured and simulated responses of the structure. Existing SI algorithms have been suffering from ill-posedness, a well-known issue in inverse problems. To overcome challenges in SI, this paper investigates the potential use of Bayesian Network (BN) for the purpose of probabilistic identification of structural parameters. The relationships between the nodes in the BN graph are described by the conditional probability tables (CPT) obtained by Monte Carlo simulations of structural analysis. To depict the spatial distribution of deteriorating structural parameter in two-dimension effectively in a BN model, a bi- variate Gaussian function is employed. The performance of the proposed method is tested and demonstrated through comparison with the results by maximum likelihood estimation (MLE) using several assumed scenarios of structural deterioration.