0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Probabilistic modelling of building stock properties for urban mining

 Probabilistic modelling of building stock properties for urban mining
Auteur(s): , , ,
Présenté pendant IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024, publié dans , pp. 1424-1432
DOI: 10.2749/manchester.2024.1424
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.2 MB

The construction industry is one of the biggest contributors to greenhouse gas emissions and unsustainable waste. A circular economy of the existing building stock can contribute to minimising mini...
Lire plus

Détails bibliographiques

Auteur(s): (Norwegian University of Science and Technology, Trondheim, Norway)
(Norwegian University of Science and Technology, Trondheim, Norway)
(Norwegian University of Science and Technology, Trondheim, Norway)
(Norwegian University of Science and Technology, Trondheim, Norway)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024
Publié dans:
Page(s): 1424-1432 Nombre total de pages (du PDF): 9
Page(s): 1424-1432
Nombre total de pages (du PDF): 9
DOI: 10.2749/manchester.2024.1424
Abstrait:

The construction industry is one of the biggest contributors to greenhouse gas emissions and unsustainable waste. A circular economy of the existing building stock can contribute to minimising mining of finite resources and reducing the construction industry’s waste. However, stakeholders often list lack of information about the existing building stock as a barrier against implementing a circular economy in the construction industry. This study provides a framework for construction industry stakeholders to combine publicly available data sources to obtain probability-based information about the building stock. The study analyses existing building data at city level using Bayesian Networks, a probabilistic modelling approach that accounts for the missing data consistently in contrast to other methods. The framework can be extended to incorporate first principle, data-based and empirical models from disciplines such as structural engineering, architecture, and industrial ecology to facilitate a circular economy.