0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Probabilistic modelling of building stock properties for urban mining

 Probabilistic modelling of building stock properties for urban mining
Autor(en): , , ,
Beitrag für IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024, veröffentlicht in , S. 1424-1432
DOI: 10.2749/manchester.2024.1424
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.2 MB

The construction industry is one of the biggest contributors to greenhouse gas emissions and unsustainable waste. A circular economy of the existing building stock can contribute to minimising mini...
Weiterlesen

Bibliografische Angaben

Autor(en): (Norwegian University of Science and Technology, Trondheim, Norway)
(Norwegian University of Science and Technology, Trondheim, Norway)
(Norwegian University of Science and Technology, Trondheim, Norway)
(Norwegian University of Science and Technology, Trondheim, Norway)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024
Veröffentlicht in:
Seite(n): 1424-1432 Anzahl der Seiten (im PDF): 9
Seite(n): 1424-1432
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/manchester.2024.1424
Abstrakt:

The construction industry is one of the biggest contributors to greenhouse gas emissions and unsustainable waste. A circular economy of the existing building stock can contribute to minimising mining of finite resources and reducing the construction industry’s waste. However, stakeholders often list lack of information about the existing building stock as a barrier against implementing a circular economy in the construction industry. This study provides a framework for construction industry stakeholders to combine publicly available data sources to obtain probability-based information about the building stock. The study analyses existing building data at city level using Bayesian Networks, a probabilistic modelling approach that accounts for the missing data consistently in contrast to other methods. The framework can be extended to incorporate first principle, data-based and empirical models from disciplines such as structural engineering, architecture, and industrial ecology to facilitate a circular economy.

Stichwörter:
Wohngebäude