0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Portable depth sensing with the iPhone time-of-flight LiDAR

 Portable depth sensing with the iPhone time-of-flight LiDAR
Auteur(s): , ,
Présenté pendant IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, publié dans , pp. 937-945
DOI: 10.2749/sanjose.2024.0937
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.62 MB

Modern smartphones offer diverse features, including ample storage, wireless data transfer, and various sensors, making them valuable for structural data collection. This study investigates the iPh...
Lire plus

Détails bibliographiques

Auteur(s): (Bauhaus-Universität Weimar, Weimar, Germany)
(Bauhaus-Universität Weimar, Weimar, Germany)
(Oregon Institute of Technology, Klamath Falls, USA)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Publié dans:
Page(s): 937-945 Nombre total de pages (du PDF): 9
Page(s): 937-945
Nombre total de pages (du PDF): 9
DOI: 10.2749/sanjose.2024.0937
Abstrait:

Modern smartphones offer diverse features, including ample storage, wireless data transfer, and various sensors, making them valuable for structural data collection. This study investigates the iPhone's LiDAR system for depth data collection, defining its field of view and assessing its performance for static and dynamic targets. We analyse limitations such as phone-to-target distance and noise properties. Measurement comparisons with a laser displacement transducer are conducted under different conditions to characterise the sensor’s properties. Discussions on the results include insights into Apple's AI-based sensor fusion framework, which enhances data resolution but potentially compromises accuracy in dynamic measurements. We demonstrate the system's practicality through modal analysis of a steel cantilever, revealing potential for bridge inspection and autonomous structural diagnostics via non-contact vibration sensing.