0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Portable depth sensing with the iPhone time-of-flight LiDAR

 Portable depth sensing with the iPhone time-of-flight LiDAR
Autor(en): , ,
Beitrag für IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, veröffentlicht in , S. 937-945
DOI: 10.2749/sanjose.2024.0937
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.62 MB

Modern smartphones offer diverse features, including ample storage, wireless data transfer, and various sensors, making them valuable for structural data collection. This study investigates the iPh...
Weiterlesen

Bibliografische Angaben

Autor(en): (Bauhaus-Universität Weimar, Weimar, Germany)
(Bauhaus-Universität Weimar, Weimar, Germany)
(Oregon Institute of Technology, Klamath Falls, USA)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Veröffentlicht in:
Seite(n): 937-945 Anzahl der Seiten (im PDF): 9
Seite(n): 937-945
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/sanjose.2024.0937
Abstrakt:

Modern smartphones offer diverse features, including ample storage, wireless data transfer, and various sensors, making them valuable for structural data collection. This study investigates the iPhone's LiDAR system for depth data collection, defining its field of view and assessing its performance for static and dynamic targets. We analyse limitations such as phone-to-target distance and noise properties. Measurement comparisons with a laser displacement transducer are conducted under different conditions to characterise the sensor’s properties. Discussions on the results include insights into Apple's AI-based sensor fusion framework, which enhances data resolution but potentially compromises accuracy in dynamic measurements. We demonstrate the system's practicality through modal analysis of a steel cantilever, revealing potential for bridge inspection and autonomous structural diagnostics via non-contact vibration sensing.