0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Pixel-level Road Crack Detection and Segmentation Based on Deep Learning

 Pixel-level Road Crack Detection and Segmentation Based on Deep Learning
Auteur(s): , ,
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1346-1352
DOI: 10.2749/nanjing.2022.1346
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.15 MB

This paper proposed an integrated framework for detecting and segmenting road cracks in complex backgrounds. Based on the latest real-time object detection algorithm, YOLOv5l6, a modified U-Net emb...
Lire plus

Détails bibliographiques

Auteur(s): (Hunan University, Changsha, Hunan, China; Hunan Key Laboratory of Damage Diagnosis of Engineering Structures, Changsha, Hunan, China)
(Hunan University, Changsha, Hunan, China; Hunan Key Laboratory of Damage Diagnosis of Engineering Structures, Changsha, Hunan, China)
(Hunan University, Changsha, Hunan, China; Hunan Key Laboratory of Damage Diagnosis of Engineering Structures, Changsha, Hunan, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1346-1352 Nombre total de pages (du PDF): 7
Page(s): 1346-1352
Nombre total de pages (du PDF): 7
DOI: 10.2749/nanjing.2022.1346
Abstrait:

This paper proposed an integrated framework for detecting and segmenting road cracks in complex backgrounds. Based on the latest real-time object detection algorithm, YOLOv5l6, a modified U-Net embedded Bottleneck and Attention mechanism modules was developed to segment crack pixels from the detected crack regions. Validation of the proposed approach was conducted based on a total of 150 images, which were taken from different backgrounds, angles, and distances. Based on the computation, the results derived from the YOLOv5l6-based crack detection had a mean average precision of 92%, and the mean intersection of the union of the modified U-Net was 87%, which is at least 11% higher than the original U-Net model. The results showed the integrated approach could be a potential basis for an automated road-condition evaluation scheme for road operation and maintenance.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.