0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Pixel-level Road Crack Detection and Segmentation Based on Deep Learning

 Pixel-level Road Crack Detection and Segmentation Based on Deep Learning
Autor(en): , ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1346-1352
DOI: 10.2749/nanjing.2022.1346
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.15 MB

This paper proposed an integrated framework for detecting and segmenting road cracks in complex backgrounds. Based on the latest real-time object detection algorithm, YOLOv5l6, a modified U-Net emb...
Weiterlesen

Bibliografische Angaben

Autor(en): (Hunan University, Changsha, Hunan, China; Hunan Key Laboratory of Damage Diagnosis of Engineering Structures, Changsha, Hunan, China)
(Hunan University, Changsha, Hunan, China; Hunan Key Laboratory of Damage Diagnosis of Engineering Structures, Changsha, Hunan, China)
(Hunan University, Changsha, Hunan, China; Hunan Key Laboratory of Damage Diagnosis of Engineering Structures, Changsha, Hunan, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1346-1352 Anzahl der Seiten (im PDF): 7
Seite(n): 1346-1352
Anzahl der Seiten (im PDF): 7
DOI: 10.2749/nanjing.2022.1346
Abstrakt:

This paper proposed an integrated framework for detecting and segmenting road cracks in complex backgrounds. Based on the latest real-time object detection algorithm, YOLOv5l6, a modified U-Net embedded Bottleneck and Attention mechanism modules was developed to segment crack pixels from the detected crack regions. Validation of the proposed approach was conducted based on a total of 150 images, which were taken from different backgrounds, angles, and distances. Based on the computation, the results derived from the YOLOv5l6-based crack detection had a mean average precision of 92%, and the mean intersection of the union of the modified U-Net was 87%, which is at least 11% higher than the original U-Net model. The results showed the integrated approach could be a potential basis for an automated road-condition evaluation scheme for road operation and maintenance.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.