0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Machine Learning Based Optimization Techniques for Predictive Strength of High Performance Concrete: Enhancing Sustainable Development

 Machine Learning Based Optimization Techniques for Predictive Strength of High Performance Concrete: Enhancing Sustainable Development
Auteur(s): , ,
Présenté pendant IABSE Congress: Engineering for Sustainable Development, New Delhi, India, 20-22 September 2023, publié dans , pp. 567-572
DOI: 10.2749/newdelhi.2023.0567
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 1.21 MB

The pursuit of sustainable growth in the construction sector needs a precise forecast of material characteristics to optimize resource consumption. This research focuses on utilizing the capabiliti...
Lire plus

Détails bibliographiques

Auteur(s): (Department of Civil Engineering, Shiv Nadar Institution of Eminence, Uttar Pradesh, Dadri, NH91, India, 201314)
(Department of Civil Engineering, Shiv Nadar Institution of Eminence, Uttar Pradesh, Dadri, NH91, India, 201314)
(Kalinga Institute of Industrial Technology, Bhubaneswar, Patia, 756001)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Engineering for Sustainable Development, New Delhi, India, 20-22 September 2023
Publié dans:
Page(s): 567-572 Nombre total de pages (du PDF): 6
Page(s): 567-572
Nombre total de pages (du PDF): 6
DOI: 10.2749/newdelhi.2023.0567
Abstrait:

The pursuit of sustainable growth in the construction sector needs a precise forecast of material characteristics to optimize resource consumption. This research focuses on utilizing the capabilities of well-known XGBoost regression algorithms to forecast the compressive strength of High- Performance Concrete (HPC). In this study, 2171 datasets were collected from literature containing input parameters that influence concrete strength, thereby creating a robust predictive model. The performance indices were assessed using root mean squared error (RMSE) and R2 score. The findings indicate that the XGBoost model outperforms standard statistical techniques in predicting accuracy. This research intends to improve the precision of compressive strength estimation, facilitating the development of more durable and sustainable construction practices.

Mots-clé:
développement durable