0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Machine Learning Based Optimization Techniques for Predictive Strength of High Performance Concrete: Enhancing Sustainable Development

 Machine Learning Based Optimization Techniques for Predictive Strength of High Performance Concrete: Enhancing Sustainable Development
Autor(en): , ,
Beitrag für IABSE Congress: Engineering for Sustainable Development, New Delhi, India, 20-22 September 2023, veröffentlicht in , S. 567-572
DOI: 10.2749/newdelhi.2023.0567
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 1.21 MB

The pursuit of sustainable growth in the construction sector needs a precise forecast of material characteristics to optimize resource consumption. This research focuses on utilizing the capabiliti...
Weiterlesen

Bibliografische Angaben

Autor(en): (Department of Civil Engineering, Shiv Nadar Institution of Eminence, Uttar Pradesh, Dadri, NH91, India, 201314)
(Department of Civil Engineering, Shiv Nadar Institution of Eminence, Uttar Pradesh, Dadri, NH91, India, 201314)
(Kalinga Institute of Industrial Technology, Bhubaneswar, Patia, 756001)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Engineering for Sustainable Development, New Delhi, India, 20-22 September 2023
Veröffentlicht in:
Seite(n): 567-572 Anzahl der Seiten (im PDF): 6
Seite(n): 567-572
Anzahl der Seiten (im PDF): 6
DOI: 10.2749/newdelhi.2023.0567
Abstrakt:

The pursuit of sustainable growth in the construction sector needs a precise forecast of material characteristics to optimize resource consumption. This research focuses on utilizing the capabilities of well-known XGBoost regression algorithms to forecast the compressive strength of High- Performance Concrete (HPC). In this study, 2171 datasets were collected from literature containing input parameters that influence concrete strength, thereby creating a robust predictive model. The performance indices were assessed using root mean squared error (RMSE) and R2 score. The findings indicate that the XGBoost model outperforms standard statistical techniques in predicting accuracy. This research intends to improve the precision of compressive strength estimation, facilitating the development of more durable and sustainable construction practices.

Stichwörter:
nachhaltige Entwicklung Druckfestigkeit