0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Long-term Missing Wind Data Recovery for Bridge Health Monitoring Using Deep Learning

 Long-term Missing Wind Data Recovery for Bridge Health Monitoring Using Deep Learning
Auteur(s): , ,
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1138-1146
DOI: 10.2749/nanjing.2022.1138
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.15 MB

As the performance of the electronic equipment for bridge SHM system deteriorates, wind data often suffer from long-term data missing, which creates barriers for safety monitoring of the bridge str...
Lire plus

Détails bibliographiques

Auteur(s): (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast Univ., Nanjing, China)
(Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast Univ., Nanjing, China)
(State Key Laboratory of Safety and Health for In-service Long Span Bridges, Jiangsu Transportation Institute Co. Ltd., Nanjing, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1138-1146 Nombre total de pages (du PDF): 9
Page(s): 1138-1146
Nombre total de pages (du PDF): 9
DOI: 10.2749/nanjing.2022.1138
Abstrait:

As the performance of the electronic equipment for bridge SHM system deteriorates, wind data often suffer from long-term data missing, which creates barriers for safety monitoring of the bridge structures. Therefore, we proposed a framework for long-term missing wind data recovery based on a deep neural network (DNN) utilizing a free access database (ECMWF). This framework consisted of one regression task (Task 1) and one temporal super-resolution task (Task 2). In Task 1, the hourly wind data provided by ECMWF were learned to the hourly ones of the SHM system. In Task 2, the low-resolution wind data were upsampled to high-resolution ones (10-min averages). The U-net architecture provided the basis for the DNNs in both tasks. The proposed framework's feasibility was verified through a case study of Sutong Bridge. The proposed methodology provides a new perspective for recovering long-term continuous missing SHM data.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.