0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Long-term Missing Wind Data Recovery for Bridge Health Monitoring Using Deep Learning

 Long-term Missing Wind Data Recovery for Bridge Health Monitoring Using Deep Learning
Autor(en): , ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1138-1146
DOI: 10.2749/nanjing.2022.1138
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.15 MB

As the performance of the electronic equipment for bridge SHM system deteriorates, wind data often suffer from long-term data missing, which creates barriers for safety monitoring of the bridge str...
Weiterlesen

Bibliografische Angaben

Autor(en): (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast Univ., Nanjing, China)
(Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast Univ., Nanjing, China)
(State Key Laboratory of Safety and Health for In-service Long Span Bridges, Jiangsu Transportation Institute Co. Ltd., Nanjing, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1138-1146 Anzahl der Seiten (im PDF): 9
Seite(n): 1138-1146
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/nanjing.2022.1138
Abstrakt:

As the performance of the electronic equipment for bridge SHM system deteriorates, wind data often suffer from long-term data missing, which creates barriers for safety monitoring of the bridge structures. Therefore, we proposed a framework for long-term missing wind data recovery based on a deep neural network (DNN) utilizing a free access database (ECMWF). This framework consisted of one regression task (Task 1) and one temporal super-resolution task (Task 2). In Task 1, the hourly wind data provided by ECMWF were learned to the hourly ones of the SHM system. In Task 2, the low-resolution wind data were upsampled to high-resolution ones (10-min averages). The U-net architecture provided the basis for the DNNs in both tasks. The proposed framework's feasibility was verified through a case study of Sutong Bridge. The proposed methodology provides a new perspective for recovering long-term continuous missing SHM data.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.