0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Investigation on Phase Lag of Bidirectional Model in Nonlinear Seismic Analysis

 Investigation on Phase Lag of Bidirectional Model in Nonlinear Seismic Analysis
Auteur(s): ,
Présenté pendant IABSE Symposium: Tomorrow’s Megastructures, Nantes, France, 19-21 September 2018, publié dans , pp. S23-133
DOI: 10.2749/nantes.2018.s23-133
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.36 MB

The phase lag angle between the displacement and nonlinear restoring force vectors found in steel bridge piers under circular displacement loadings is one of the quantitative measures of multi- com...
Lire plus

Détails bibliographiques

Auteur(s): (Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji-shi, Kyoto)
(Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji-shi, Kyoto)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Tomorrow’s Megastructures, Nantes, France, 19-21 September 2018
Publié dans:
Page(s): S23-133 Nombre total de pages (du PDF): 7
Page(s): S23-133
Nombre total de pages (du PDF): 7
DOI: 10.2749/nantes.2018.s23-133
Abstrait:

The phase lag angle between the displacement and nonlinear restoring force vectors found in steel bridge piers under circular displacement loadings is one of the quantitative measures of multi- component interaction of bidirectional nonlinear restoring force. In this study, influence of the phase lag angle on dynamic response of structures under bidirectional seismic excitation is investigated using a modified rigid-plastic bidirectional restoring force model. The results of nonlinear time history analyses of the bidirectional rigid-plastic model with a uniform resultant force-displacement relationship and varying phase lag angles under bidirectional accelerograms show that the bidirectional model with a higher phase lag angle induces a higher circumferential energy dissipation, resulting smaller radial displacements.