0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Investigation on Phase Lag of Bidirectional Model in Nonlinear Seismic Analysis

 Investigation on Phase Lag of Bidirectional Model in Nonlinear Seismic Analysis
Autor(en): ,
Beitrag für IABSE Symposium: Tomorrow’s Megastructures, Nantes, France, 19-21 September 2018, veröffentlicht in , S. S23-133
DOI: 10.2749/nantes.2018.s23-133
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.36 MB

The phase lag angle between the displacement and nonlinear restoring force vectors found in steel bridge piers under circular displacement loadings is one of the quantitative measures of multi- com...
Weiterlesen

Bibliografische Angaben

Autor(en): (Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji-shi, Kyoto)
(Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji-shi, Kyoto)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Symposium: Tomorrow’s Megastructures, Nantes, France, 19-21 September 2018
Veröffentlicht in:
Seite(n): S23-133 Anzahl der Seiten (im PDF): 7
Seite(n): S23-133
Anzahl der Seiten (im PDF): 7
DOI: 10.2749/nantes.2018.s23-133
Abstrakt:

The phase lag angle between the displacement and nonlinear restoring force vectors found in steel bridge piers under circular displacement loadings is one of the quantitative measures of multi- component interaction of bidirectional nonlinear restoring force. In this study, influence of the phase lag angle on dynamic response of structures under bidirectional seismic excitation is investigated using a modified rigid-plastic bidirectional restoring force model. The results of nonlinear time history analyses of the bidirectional rigid-plastic model with a uniform resultant force-displacement relationship and varying phase lag angles under bidirectional accelerograms show that the bidirectional model with a higher phase lag angle induces a higher circumferential energy dissipation, resulting smaller radial displacements.