0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Geometric Digital Twins of RC Bridge Point Clouds using Instance Segmentation

 Geometric Digital Twins of RC Bridge Point Clouds using Instance Segmentation
Auteur(s): ,
Présenté pendant IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, publié dans , pp. 977-986
DOI: 10.2749/sanjose.2024.0977
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.51 MB

Manual bridge inspections are often inefficient, costly, and dangerous. To address these challenges, researchers have been exploring the use of digital twins—digital replicas of physical bridges co...
Lire plus

Détails bibliographiques

Auteur(s): (University of Houston, Houston, TX 77024)
(University of Houston, Houston, TX 77024)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Publié dans:
Page(s): 977-986 Nombre total de pages (du PDF): 10
Page(s): 977-986
Nombre total de pages (du PDF): 10
DOI: 10.2749/sanjose.2024.0977
Abstrait:

Manual bridge inspections are often inefficient, costly, and dangerous. To address these challenges, researchers have been exploring the use of digital twins—digital replicas of physical bridges containing structural and condition data. This paper proposes a novel methodology for the automated production of geometric digital twins of reinforced concrete (RC) bridges by leveraging instance segmentation of point clouds. The process involves data acquisition, reality modeling, and the application of deep learning methods to extract and classify individual bridge components. The study introduces a new approach for generating synthetic point cloud datasets to facilitate instance segmentation and evaluates the Mask3D model for this task. The ultimate goal is to enhance bridge management by creating accurate and comprehensive geometric digital twins.