0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Geometric Digital Twins of RC Bridge Point Clouds using Instance Segmentation

 Geometric Digital Twins of RC Bridge Point Clouds using Instance Segmentation
Autor(en): ,
Beitrag für IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, veröffentlicht in , S. 977-986
DOI: 10.2749/sanjose.2024.0977
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.51 MB

Manual bridge inspections are often inefficient, costly, and dangerous. To address these challenges, researchers have been exploring the use of digital twins—digital replicas of physical bridges co...
Weiterlesen

Bibliografische Angaben

Autor(en): (University of Houston, Houston, TX 77024)
(University of Houston, Houston, TX 77024)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Veröffentlicht in:
Seite(n): 977-986 Anzahl der Seiten (im PDF): 10
Seite(n): 977-986
Anzahl der Seiten (im PDF): 10
DOI: 10.2749/sanjose.2024.0977
Abstrakt:

Manual bridge inspections are often inefficient, costly, and dangerous. To address these challenges, researchers have been exploring the use of digital twins—digital replicas of physical bridges containing structural and condition data. This paper proposes a novel methodology for the automated production of geometric digital twins of reinforced concrete (RC) bridges by leveraging instance segmentation of point clouds. The process involves data acquisition, reality modeling, and the application of deep learning methods to extract and classify individual bridge components. The study introduces a new approach for generating synthetic point cloud datasets to facilitate instance segmentation and evaluates the Mask3D model for this task. The ultimate goal is to enhance bridge management by creating accurate and comprehensive geometric digital twins.

Stichwörter:
Photogrammetrie