0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Detection Algorithm of Structural Surface Cracks Based on Class Activation Map

 Detection Algorithm of Structural Surface Cracks Based on Class Activation Map
Auteur(s): ,
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1216-1223
DOI: 10.2749/nanjing.2022.1216
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.15 MB

The computer vision algorithm based on deep learning has achieved excellent performance in structural surface damage detection, but the accurate detection algorithm has high requirements for the qu...
Lire plus

Détails bibliographiques

Auteur(s): (Department of Bridge Engineering, Tongji University, Shanghai, China)
(Department of Bridge Engineering, Tongji University, Shanghai, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1216-1223 Nombre total de pages (du PDF): 8
Page(s): 1216-1223
Nombre total de pages (du PDF): 8
DOI: 10.2749/nanjing.2022.1216
Abstrait:

The computer vision algorithm based on deep learning has achieved excellent performance in structural surface damage detection, but the accurate detection algorithm has high requirements for the quantity and quality of data sets. This paper presents a method based on class activation map (CAM), which can detect the crack position and distribution only by image-level data labeling. Firstly, a classification model Vgg16-Crack is trained based on the transfer learning method, and the accuracy and generalization ability of the model are tested by the confusion matrix. Then, based on the CAM algorithm, this paper improves and optimizes the current Grad-CAM++ algorithm, and takes the CAM generated by Vgg16-Crack as the result of crack detection. Finally, the method proposed in this paper is tested in the field. The test result shows that the method proposed in this paper can realize the accurate detection of structural surface cracks.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.