0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Detection Algorithm of Structural Surface Cracks Based on Class Activation Map

 Detection Algorithm of Structural Surface Cracks Based on Class Activation Map
Autor(en): ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1216-1223
DOI: 10.2749/nanjing.2022.1216
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.15 MB

The computer vision algorithm based on deep learning has achieved excellent performance in structural surface damage detection, but the accurate detection algorithm has high requirements for the qu...
Weiterlesen

Bibliografische Angaben

Autor(en): (Department of Bridge Engineering, Tongji University, Shanghai, China)
(Department of Bridge Engineering, Tongji University, Shanghai, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1216-1223 Anzahl der Seiten (im PDF): 8
Seite(n): 1216-1223
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/nanjing.2022.1216
Abstrakt:

The computer vision algorithm based on deep learning has achieved excellent performance in structural surface damage detection, but the accurate detection algorithm has high requirements for the quantity and quality of data sets. This paper presents a method based on class activation map (CAM), which can detect the crack position and distribution only by image-level data labeling. Firstly, a classification model Vgg16-Crack is trained based on the transfer learning method, and the accuracy and generalization ability of the model are tested by the confusion matrix. Then, based on the CAM algorithm, this paper improves and optimizes the current Grad-CAM++ algorithm, and takes the CAM generated by Vgg16-Crack as the result of crack detection. Finally, the method proposed in this paper is tested in the field. The test result shows that the method proposed in this paper can realize the accurate detection of structural surface cracks.

Stichwörter:
Risserkennung
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.