0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Construction Engineering for Stonecutters Bridge: Concrete Backspans and Steel Deck Heavy Lift

 Construction Engineering for Stonecutters Bridge: Concrete Backspans and Steel Deck Heavy Lift
Auteur(s): ORCID,
Présenté pendant 17th IABSE Congress: Creating and Renewing Urban Structures – Tall Buildings, Bridges and Infrastructure, Chicago, USA, 17-19 September 2008, publié dans , pp. 404-405
DOI: 10.2749/222137908796293172
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.11 MB

Stonecutters Bridge will be the second longest cable-stayed bridge in the world with a main span of 1018m. This paper describes the construction of the concrete backspans and the steel deck around ...
Lire plus

Détails bibliographiques

Auteur(s): ORCID

Médium: papier de conférence
Langue(s): anglais
Conférence: 17th IABSE Congress: Creating and Renewing Urban Structures – Tall Buildings, Bridges and Infrastructure, Chicago, USA, 17-19 September 2008
Publié dans:
Page(s): 404-405 Nombre total de pages (du PDF): 8
Page(s): 404-405
Nombre total de pages (du PDF): 8
Année: 2008
DOI: 10.2749/222137908796293172
Abstrait:

Stonecutters Bridge will be the second longest cable-stayed bridge in the world with a main span of 1018m. This paper describes the construction of the concrete backspans and the steel deck around the bridge towers. The construction of the concrete backspans was one of the most difficult aspects in the erection of the bridge. At a height of about 70m a geometrically complex grillage deck, monolithically connected to the piers was to be constructed. The concrete girders are constructed on a unique and purpose-designed falsework system, suited to the contractor’s needs. An 88m long portion of the steel deck to either side of the tower was to be erected on falsework but an alternative Heavy Lift scheme was developed, yielding economical, programme and quality advantages. This paper describes the development of the construction procedures, the design of the temporary works, the construction engineering aspects of adequacy checks and geometry control, and how the challenges of construction were harnessed.

Mots-clé:
acier béton Pont à haubans levage de charges lourdes

Ouvrages et projets