0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Computer Aided Design & Erection of Long Suspension Bridges

 Computer Aided Design & Erection of Long Suspension Bridges
Auteur(s): , ,
Présenté pendant IABSE Symposium: Improving Infrastructure Worldwide, Weimar, Germany, 19-21 September 2007, publié dans , pp. 386-389
DOI: 10.2749/222137807796158345
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.2 MB

Wherever built, suspension bridges attract public attention due to their size and conspicuousness. However, the long spans combined with extraordinary slenderness yield outstanding challenges.

...

Lire plus

Détails bibliographiques

Auteur(s):


Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Improving Infrastructure Worldwide, Weimar, Germany, 19-21 September 2007
Publié dans:
Page(s): 386-389 Nombre total de pages (du PDF): 8
Page(s): 386-389
Nombre total de pages (du PDF): 8
Année: 2007
DOI: 10.2749/222137807796158345
Abstrait:

Wherever built, suspension bridges attract public attention due to their size and conspicuousness. However, the long spans combined with extraordinary slenderness yield outstanding challenges.

First of all, in any case the slenderness and kinematical conditions of these structures bring about large displacements due to the permanent loads. Therefore, the shape of the bridge is a non-linear function of the loading, deviating to a great extent from the hypothetical “stress-less” shape. The form finding process is a complicated iterative process if done in the conventional way. As an alternative, the Additional Constraint Method has been provided in the program RM2006 in order to find and optimize the shape of the suspension cables and the hangers.

A further great challenge is the simulation of the erection process. Further on, un-symmetric loading due to traffic causes large displacements and requires non-linear traffic analyses. Last but not least, a major engineering challenge of long suspension bridges is their susceptibility to wind induced vibrations.

The Hardanger Bridge project is used as a descriptive example for an integrative procedure including form finding, simulation of the erection process, and detailed analysis with considering geometric non-linearity and dynamic impacts like wind induced vibrations.

Mots-clé:
pont suspendu

Ouvrages et projets

Types d'ouvrages