0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Bridge weigh-in-motion using bridge influence surface and computer vision: an experimental study

 Bridge weigh-in-motion using bridge influence surface and computer vision: an experimental study
Auteur(s): , , , , ORCID
Présenté pendant IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021, publié dans , pp. 435-440
DOI: 10.2749/ghent.2021.0435
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.22 MB

Complicated traffic scenarios, including random lane change and multiple presences of vehicles on bridges are the main obstacles preventing bridge weigh-in-motion (BWIM) technique from reliable and...
Lire plus

Détails bibliographiques

Auteur(s): (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
(State Key Laboratory for Health and Safety of Bridge Structures,Wuhan 430034, China‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌)
(State Key Laboratory for Health and Safety of Bridge Structures,Wuhan 430034, China‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌)
(State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
ORCID (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021
Publié dans:
Page(s): 435-440 Nombre total de pages (du PDF): 6
Page(s): 435-440
Nombre total de pages (du PDF): 6
DOI: 10.2749/ghent.2021.0435
Abstrait:

Complicated traffic scenarios, including random lane change and multiple presences of vehicles on bridges are the main obstacles preventing bridge weigh-in-motion (BWIM) technique from reliable and massive application. To tackle the complicated traffic problems of BWIM, this paper develops a novel BWIM method by integrating the bridge influence surface theory and deep-learning based computer vision technique. For illustration and verification, the proposed method is applied to identify gross weights of vehicles in scale experiments, where various complicated traffic scenarios are simulated. Identification results confirm the favourable robustness, accuracy, and cost- effectiveness of the method.

Copyright: © 2021 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.