0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Bridge weigh-in-motion using bridge influence surface and computer vision: an experimental study

 Bridge weigh-in-motion using bridge influence surface and computer vision: an experimental study
Autor(en): , , , , ORCID
Beitrag für IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021, veröffentlicht in , S. 435-440
DOI: 10.2749/ghent.2021.0435
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.22 MB

Complicated traffic scenarios, including random lane change and multiple presences of vehicles on bridges are the main obstacles preventing bridge weigh-in-motion (BWIM) technique from reliable and...
Weiterlesen

Bibliografische Angaben

Autor(en): (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
(State Key Laboratory for Health and Safety of Bridge Structures,Wuhan 430034, China‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌)
(State Key Laboratory for Health and Safety of Bridge Structures,Wuhan 430034, China‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌)
(State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
ORCID (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021
Veröffentlicht in:
Seite(n): 435-440 Anzahl der Seiten (im PDF): 6
Seite(n): 435-440
Anzahl der Seiten (im PDF): 6
DOI: 10.2749/ghent.2021.0435
Abstrakt:

Complicated traffic scenarios, including random lane change and multiple presences of vehicles on bridges are the main obstacles preventing bridge weigh-in-motion (BWIM) technique from reliable and massive application. To tackle the complicated traffic problems of BWIM, this paper develops a novel BWIM method by integrating the bridge influence surface theory and deep-learning based computer vision technique. For illustration and verification, the proposed method is applied to identify gross weights of vehicles in scale experiments, where various complicated traffic scenarios are simulated. Identification results confirm the favourable robustness, accuracy, and cost- effectiveness of the method.

Copyright: © 2021 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.