0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Bayesian Regularization Neural Network Model for Fatigue Life Prediction of Concrete

A Bayesian Regularization Neural Network Model for Fatigue Life Prediction of Concrete
Auteur(s): , ,
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1959-1968
DOI: 10.2749/nanjing.2022.1959
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.15 MB

The fatigue life of concrete is affected by many interwoven factors whose effect is nonlinear. Because of its unique self-learning ability and strong generalization capability, a neural network mod...
Lire plus

Détails bibliographiques

Auteur(s): (Beijing University of Technology, Beijing, China)
(Beijing University of Technology, Beijing, China)
(Beijing University of Technology, Beijing, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1959-1968 Nombre total de pages (du PDF): 10
Page(s): 1959-1968
Nombre total de pages (du PDF): 10
DOI: 10.2749/nanjing.2022.1959
Abstrait:

The fatigue life of concrete is affected by many interwoven factors whose effect is nonlinear. Because of its unique self-learning ability and strong generalization capability, a neural network model is proposed to predict concrete behavior in tensile fatigue. Firstly, the average relative impact value was constructed to analyze the importance of parameters affecting fatigue life, such as the maximum stress level Smax, stress ratio R, failure probability P, and static strength f. Then, using the backpropagation neural network improved by Bayesian regularization, S-N curves were obtained for the combinations of R=0,1, 0,2, 0,5; f=5, 6, 7MPa; P=5%, 50%, 95%. Finally, the tensile fatigue results obtained from different testing conditions were compared for compatibility. Besides utilizing the valuable fatigue test data scattered in the literature, insights gained from this work could provide a reference for subsequent fatigue test program design and fatigue evaluation.

Mots-clé:
béton
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.