0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A Bayesian Regularization Neural Network Model for Fatigue Life Prediction of Concrete

A Bayesian Regularization Neural Network Model for Fatigue Life Prediction of Concrete
Autor(en): , ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1959-1968
DOI: 10.2749/nanjing.2022.1959
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.15 MB

The fatigue life of concrete is affected by many interwoven factors whose effect is nonlinear. Because of its unique self-learning ability and strong generalization capability, a neural network mod...
Weiterlesen

Bibliografische Angaben

Autor(en): (Beijing University of Technology, Beijing, China)
(Beijing University of Technology, Beijing, China)
(Beijing University of Technology, Beijing, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1959-1968 Anzahl der Seiten (im PDF): 10
Seite(n): 1959-1968
Anzahl der Seiten (im PDF): 10
DOI: 10.2749/nanjing.2022.1959
Abstrakt:

The fatigue life of concrete is affected by many interwoven factors whose effect is nonlinear. Because of its unique self-learning ability and strong generalization capability, a neural network model is proposed to predict concrete behavior in tensile fatigue. Firstly, the average relative impact value was constructed to analyze the importance of parameters affecting fatigue life, such as the maximum stress level Smax, stress ratio R, failure probability P, and static strength f. Then, using the backpropagation neural network improved by Bayesian regularization, S-N curves were obtained for the combinations of R=0,1, 0,2, 0,5; f=5, 6, 7MPa; P=5%, 50%, 95%. Finally, the tensile fatigue results obtained from different testing conditions were compared for compatibility. Besides utilizing the valuable fatigue test data scattered in the literature, insights gained from this work could provide a reference for subsequent fatigue test program design and fatigue evaluation.

Stichwörter:
Beton
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.