0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

AAEM versus numerical rheology investigation of composite steel concrete beams

 AAEM versus numerical rheology investigation of composite steel concrete beams
Auteur(s): ,
Présenté pendant IABSE Conference: Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, September 2015, publié dans , pp. 701-708
DOI: 10.2749/222137815818357773
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.09 MB
  • The paper presents analysis of the stress changes due to creep in statically determinate composite steel-concrete beam according to (AAEM) method of Bažant in comparison with numerical sol...
    Lire plus

Détails bibliographiques

Auteur(s): (University of Structural Engineering and Architecture, VSU, “L. Karavelov”Sofia, Bulgaria)
(University of Structural Engineering and Architecture, VSU, “L. Karavelov”Sofia, Bulgaria)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Conference: Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, September 2015
Publié dans:
Page(s): 701-708 Nombre total de pages (du PDF): 8
Page(s): 701-708
Nombre total de pages (du PDF): 8
Année: 2015
DOI: 10.2749/222137815818357773
Abstrait:
  • The paper presents analysis of the stress changes due to creep in statically determinate composite steel-concrete beam according to (AAEM) method of Bažant in comparison with numerical solution using Volterra integral equations based on EC2 provisions for creep of concrete. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann – Volterra and algebraic-type creep law of Trost - Bažant for the concrete part considering the above mentioned models. It is analyzed the migration of stresses from concrete plate to steel beam using two independent Volterra integral equations of the second kind and two independent algebraic equations. The closeness of the results obtained by the two methods is shown with an example from the bridge practice.