Zhaoyun Sun
- Airfield concrete pavement joint detection network based on dual-modal feature fusion. Dans: Automation in Construction, v. 151 (juillet 2023). (2023):
- Feature representation improved Faster R-CNN model for high efficiency pavement crack detection. Dans: Canadian Journal of Civil Engineering / Revue canadienne de génie civil, v. 50, n. 2 (février 2023). (2023):
- Evaluation and Comparison of Real-Time Laser and Electric Sand-Patch Pavement Texture-Depth Measurement Methods. Dans: Journal of Transportation Engineering, v. 142, n. 7 (juillet 2016). (2016):
- Assessment of importance-based machine learning feature selection methods for aggregate size distribution measurement in a 3D binocular vision system. Dans: Construction and Building Materials, v. 306 (novembre 2021). (2021):
- Detecting Potholes in Asphalt Pavement under Small-sample Conditions Based on Improved Faster Region-based Convolution Neural Networks. Dans: Canadian Journal of Civil Engineering / Revue canadienne de génie civil, v. 49, n. 2 (février 2022). (2022):
- Crack Grid Detection and Calculation Based on Convolutional Neural Network. Dans: Canadian Journal of Civil Engineering / Revue canadienne de génie civil, v. 48, n. 9 (septembre 2021). (2021):
- Asphalt Pavement Friction Coefficient Prediction Method Based on Genetic-Algorithm-Improved Neural Network(GAI-NN) Model. Dans: Canadian Journal of Civil Engineering / Revue canadienne de génie civil, v. 49, n. 1 (janvier 2022). (2022):
- Quantitative evaluation for shape characteristics of aggregate particles based on 3D point cloud data. Dans: Construction and Building Materials, v. 263 (décembre 2020). (2020):
- Pavement aggregate shape classification based on extreme gradient boosting. Dans: Construction and Building Materials, v. 256 (septembre 2020). (2020):