- Enhanced bond strength prediction in corroded reinforced concrete using optimized ML models. Dans: Structures, v. 63 (mai 2024). (2024):
- Hybrid Machine learning Techniques-Aided design of corroded reinforced concrete beams. Dans: Computers & Structures, v. 298 (juillet 2024). (2024):
- Novel approaches to predict the Marshall parameters of basalt fiber asphalt concrete. Dans: Construction and Building Materials, v. 400 (octobre 2023). (2023):
- Predicting axial compression capacity of CFDST columns and design optimization using advanced machine learning techniques. Dans: Structures, v. 59 (janvier 2024). (2024):
- Advancing basalt fiber asphalt concrete design: A novel approach using gradient boosting and metaheuristic algorithms. Dans: Case Studies in Construction Materials, v. 19 (décembre 2023). (2023):
- Ensemble XGBoost schemes for improved compressive strength prediction of UHPC. Dans: Structures, v. 57 (novembre 2023). (2023):
- Predicting shear strength of slender beams without reinforcement using hybrid gradient boosting trees and optimization algorithms. Dans: Frontiers of Structural and Civil Engineering, v. 16, n. 10 (novembre 2022). (2022):
- Neural network approach for GO-modified asphalt properties estimation. Dans: Case Studies in Construction Materials, v. 17 (décembre 2022). (2022):
- (2022): Ensemble Tree-Based Approach to Predict the Rotation Capacity of Wide-Flange Beams. Dans: Advances in Civil Engineering, v. 2022 (janvier 2022).
- An Extreme Gradient Boosting approach to estimate the shear strength of FRP reinforced concrete beams. Dans: Structures, v. 45 (novembre 2022). (2022):
- Novel ensemble approach to predict the ultimate axial load of CFST columns with different cross-sections. Dans: Structures, v. 47 (janvier 2023). (2023):
- Development of deep neural network model to predict the compressive strength of rubber concrete. Dans: Construction and Building Materials, v. 301 (septembre 2021). (2021):
- (2021): Prediction Compressive Strength of Concrete Containing GGBFS using Random Forest Model. Dans: Advances in Civil Engineering, v. 2021 (janvier 2021).
- (2021): Estimation of Soil Cohesion Using Machine Learning Method: A Random Forest Approach. Dans: Advances in Civil Engineering, v. 2021 (janvier 2021).