0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Thuy-Anh Nguyen ORCID

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Nguyen, Thuy-Anh / Trinh, Son Hoang / Ly, Hai-Bang (2024): Enhanced bond strength prediction in corroded reinforced concrete using optimized ML models. In: Structures, v. 63 (Mai 2024).

    https://doi.org/10.1016/j.istruc.2024.106461

  2. Nguyen, Thuy-Anh / Ly, Hai-Bang (2024): Hybrid Machine learning Techniques-Aided design of corroded reinforced concrete beams. In: Computers & Structures, v. 298 (Juli 2024).

    https://doi.org/10.1016/j.compstruc.2024.107388

  3. Phung, Ba-Nhan / Le, Thanh-Hai / Nguyen, Thuy-Anh / Hoang, Huong-Giang Thi / Ly, Hai-Bang (2023): Novel approaches to predict the Marshall parameters of basalt fiber asphalt concrete. In: Construction and Building Materials, v. 400 (Oktober 2023).

    https://doi.org/10.1016/j.conbuildmat.2023.132847

  4. Nguyen, Thuy-Anh / Ly, Hai-Bang (2024): Predicting axial compression capacity of CFDST columns and design optimization using advanced machine learning techniques. In: Structures, v. 59 (Januar 2024).

    https://doi.org/10.1016/j.istruc.2023.105724

  5. Phung, Ba Nhan / Le, Thanh-Hai / Mai, Hai-Van Thi / Nguyen, Thuy-Anh / Ly, Hai-Bang (2023): Advancing basalt fiber asphalt concrete design: A novel approach using gradient boosting and metaheuristic algorithms. In: Case Studies in Construction Materials, v. 19 (Dezember 2023).

    https://doi.org/10.1016/j.cscm.2023.e02528

  6. Nguyen, May Huu / Nguyen, Thuy-Anh / Ly, Hai-Bang (2023): Ensemble XGBoost schemes for improved compressive strength prediction of UHPC. In: Structures, v. 57 (November 2023).

    https://doi.org/10.1016/j.istruc.2023.105062

  7. Nguyen, Thuy-Anh / Ly, Hai-Bang / Tran, Van Quan (2022): Predicting shear strength of slender beams without reinforcement using hybrid gradient boosting trees and optimization algorithms. In: Frontiers of Structural and Civil Engineering, v. 16, n. 10 (November 2022).

    https://doi.org/10.1007/s11709-022-0842-0

  8. Hoang, Huong-Giang Thi / Nguyen, Thuy-Anh / Nguyen, Hoang-Long / Ly, Hai-Bang (2022): Neural network approach for GO-modified asphalt properties estimation. In: Case Studies in Construction Materials, v. 17 (Dezember 2022).

    https://doi.org/10.1016/j.cscm.2022.e01617

  9. Nguyen, Thuy-Anh / Ly, Hai-Bang (2022): Ensemble Tree-Based Approach to Predict the Rotation Capacity of Wide-Flange Beams. In: Advances in Civil Engineering, v. 2022 (Januar 2022).

    https://doi.org/10.1155/2022/4195243

  10. Le, Hoang-Anh / Le, Duc-Anh / Le, Thanh-Tung / Le, Hoai-Phuong / Le, Thanh-Hai / Hoang, Huong-Giang Thi / Nguyen, Thuy-Anh (2022): An Extreme Gradient Boosting approach to estimate the shear strength of FRP reinforced concrete beams. In: Structures, v. 45 (November 2022).

    https://doi.org/10.1016/j.istruc.2022.09.112

  11. Nguyen, Thuy-Anh / Trinh, Son Hoang / Nguyen, May Huu / Ly, Hai-Bang (2023): Novel ensemble approach to predict the ultimate axial load of CFST columns with different cross-sections. In: Structures, v. 47 (Januar 2023).

    https://doi.org/10.1016/j.istruc.2022.11.047

  12. Ly, Hai-Bang / Nguyen, Thuy-Anh / Mai, Hai-Van Thi / Tran, Van Quan (2021): Development of deep neural network model to predict the compressive strength of rubber concrete. In: Construction and Building Materials, v. 301 (September 2021).

    https://doi.org/10.1016/j.conbuildmat.2021.124081

  13. Mai, Hai-Van Thi / Nguyen, Thuy-Anh / Ly, Hai-Bang / Tran, Van Quan (2021): Prediction Compressive Strength of Concrete Containing GGBFS using Random Forest Model. In: Advances in Civil Engineering, v. 2021 (Januar 2021).

    https://doi.org/10.1155/2021/6671448

  14. Ly, Hai-Bang / Nguyen, Thuy-Anh / Thai Pham, Binh (2021): Estimation of Soil Cohesion Using Machine Learning Method: A Random Forest Approach. In: Advances in Civil Engineering, v. 2021 (Januar 2021).

    https://doi.org/10.1155/2021/8873993

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine