- Application of machine learning in predicting workability for alkali-activated materials. Dans: Case Studies in Construction Materials, v. 18 (juillet 2023). (2023):
- Fresh properties and characteristic testing methods for alkali-activated materials: A review. Dans: Journal of Building Engineering, v. 75 (septembre 2023). (2023):
- Physically explicable mathematical model for strength prediction of UHPFRC. Dans: Engineering Structures, v. 275 (janvier 2023). (2023):
- Prediction of the drying shrinkage of alkali-activated materials using artificial neural networks. Dans: Case Studies in Construction Materials, v. 17 (décembre 2022). (2022):
- Modeling the Drying Shrinkage of Cement Paste Prepared with Wastewater. Dans: Journal of Materials in Civil Engineering (ASCE), v. 34, n. 6 (juin 2022). (2022):
- Mathematical model for strength of alkali-activated materials. Dans: Journal of Building Engineering, v. 44 (décembre 2021). (2021):