0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Alyami, Mana / Nassar, Roz-Ud-Din / Khan, Majid / Hammad, Ahmed WA / Alabduljabbar, Hisham / Nawaz, R. / Fawad, Muhammad / Gamil, Yaser (2024): Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models. Dans: Case Studies in Construction Materials, v. 20 (juillet 2024).

    https://doi.org/10.1016/j.cscm.2024.e02901

  2. Alyami, Mana / Khan, Majid / Fawad, Muhammad / Nawaz, R. / Hammad, Ahmed W. A. / Najeh, Taoufik / Gamil, Yaser (2024): Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms. Dans: Case Studies in Construction Materials, v. 20 (juillet 2024).

    https://doi.org/10.1016/j.cscm.2023.e02728

  3. Khan, Adil / Khan, Majid / Ali, Mohsin / Khan, Murad / Khan, Asad Ullah / Shakeel, Muhammad / Fawad, Muhammad / Najeh, Taoufik / Gamil, Yaser (2024): Predictive modeling for depth of wear of concrete modified with fly ash: A comparative analysis of genetic programming-based algorithms. Dans: Case Studies in Construction Materials, v. 20 (juillet 2024).

    https://doi.org/10.1016/j.cscm.2023.e02744

  4. Alyami, Mana / Khan, Majid / Javed, Muhammad Faisal / Ali, Mujahid / Alabduljabbar, Hisham / Najeh, Taoufik / Gamil, Yaser (2024): Application of metaheuristic optimization algorithms in predicting the compressive strength of 3D-printed fiber-reinforced concrete. Dans: Developments in the Built Environment, v. 17 (mars 2024).

    https://doi.org/10.1016/j.dibe.2023.100307

  5. Alyousef, jssRayed / Nassar, Roz-Ud-Din / Khan, Majid / Arif, Kiran / Fawad, Muhammad / Hassan, Ahmed M. / Ghamry, Nivin A. (2023): Forecasting the Strength Characteristics of Concrete incorporating Waste Foundry Sand using advance machine algorithms including deep learning. Dans: Case Studies in Construction Materials, v. 19 (décembre 2023).

    https://doi.org/10.1016/j.cscm.2023.e02459

  6. Alyousef, Rayed / Faisal Rehman, Muhammad / Khan, Majid / Fawad, Muhammad / Khan, Asad Ullah / Hassan, Ahmed M. / Ghamry, Nivin A. (2023): Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures. Dans: Case Studies in Construction Materials, v. 19 (décembre 2023).

    https://doi.org/10.1016/j.cscm.2023.e02418

  7. Alabduljabbar, Hisham / Khan, Majid / Awan, Hamad Hassan / Eldin, Sayed M. / Alyousef, Rayed / Mohamed, Abdeliazim Mustafa (2023): Predicting ultra-high-performance concrete compressive strength using gene expression programming method. Dans: Case Studies in Construction Materials, v. 18 (juillet 2023).

    https://doi.org/10.1016/j.cscm.2023.e02074

  8. Khan, Majid / Ibrahim, Muhammad / Saeed, Tareq (2022): Space cooling achievement by using lower electricity in hot months through introducing PCM-enhanced buildings. Dans: Journal of Building Engineering, v. 53 (août 2022).

    https://doi.org/10.1016/j.jobe.2022.104506

  9. Winchell, Lloyd J. / Wells, Martha J. M. / Ross, John J. / Fonoll, Xavier / Norton, John W. / Kuplicki, Stephen / Khan, Majid / Bell, Katherine Y. (2022): Per- and Polyfluoroalkyl Substances Presence, Pathways, and Cycling through Drinking Water and Wastewater Treatment. Dans: Journal of Environmental Engineering (ASCE), v. 148, n. 1 (janvier 2022).

    https://doi.org/10.1061/(asce)ee.1943-7870.0001943

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine