0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Arif, Muhammad / Jan, Faizullah / Rezzoug, Aïssa / Afridi, Muhammad Ali / Luqman, Muhammad / Khan, Waseem Akhtar / Kujawa, Marcin / Alabduljabbar, Hisham / Khan, Majid (2024): Data-driven models for predicting compressive strength of 3D-printed fiber-reinforced concrete using interpretable machine learning algorithms. In: Case Studies in Construction Materials, v. 21 (Dezember 2024).

    https://doi.org/10.1016/j.cscm.2024.e03935

  2. Alyami, Mana / Nassar, Roz-Ud-Din / Khan, Majid / Hammad, Ahmed WA / Alabduljabbar, Hisham / Nawaz, R. / Fawad, Muhammad / Gamil, Yaser (2024): Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models. In: Case Studies in Construction Materials, v. 20 (Juli 2024).

    https://doi.org/10.1016/j.cscm.2024.e02901

  3. Alyami, Mana / Khan, Majid / Fawad, Muhammad / Nawaz, R. / Hammad, Ahmed W. A. / Najeh, Taoufik / Gamil, Yaser (2024): Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms. In: Case Studies in Construction Materials, v. 20 (Juli 2024).

    https://doi.org/10.1016/j.cscm.2023.e02728

  4. Khan, Adil / Khan, Majid / Ali, Mohsin / Khan, Murad / Khan, Asad Ullah / Shakeel, Muhammad / Fawad, Muhammad / Najeh, Taoufik / Gamil, Yaser (2024): Predictive modeling for depth of wear of concrete modified with fly ash: A comparative analysis of genetic programming-based algorithms. In: Case Studies in Construction Materials, v. 20 (Juli 2024).

    https://doi.org/10.1016/j.cscm.2023.e02744

  5. Alyami, Mana / Khan, Majid / Javed, Muhammad Faisal / Ali, Mujahid / Alabduljabbar, Hisham / Najeh, Taoufik / Gamil, Yaser (2024): Application of metaheuristic optimization algorithms in predicting the compressive strength of 3D-printed fiber-reinforced concrete. In: Developments in the Built Environment, v. 17 (März 2024).

    https://doi.org/10.1016/j.dibe.2023.100307

  6. Alyousef, jssRayed / Nassar, Roz-Ud-Din / Khan, Majid / Arif, Kiran / Fawad, Muhammad / Hassan, Ahmed M. / Ghamry, Nivin A. (2023): Forecasting the Strength Characteristics of Concrete incorporating Waste Foundry Sand using advance machine algorithms including deep learning. In: Case Studies in Construction Materials, v. 19 (Dezember 2023).

    https://doi.org/10.1016/j.cscm.2023.e02459

  7. Alyousef, Rayed / Faisal Rehman, Muhammad / Khan, Majid / Fawad, Muhammad / Khan, Asad Ullah / Hassan, Ahmed M. / Ghamry, Nivin A. (2023): Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures. In: Case Studies in Construction Materials, v. 19 (Dezember 2023).

    https://doi.org/10.1016/j.cscm.2023.e02418

  8. Alabduljabbar, Hisham / Khan, Majid / Awan, Hamad Hassan / Eldin, Sayed M. / Alyousef, Rayed / Mohamed, Abdeliazim Mustafa (2023): Predicting ultra-high-performance concrete compressive strength using gene expression programming method. In: Case Studies in Construction Materials, v. 18 (Juli 2023).

    https://doi.org/10.1016/j.cscm.2023.e02074

  9. Khan, Majid / Ibrahim, Muhammad / Saeed, Tareq (2022): Space cooling achievement by using lower electricity in hot months through introducing PCM-enhanced buildings. In: Journal of Building Engineering, v. 53 (August 2022).

    https://doi.org/10.1016/j.jobe.2022.104506

  10. Winchell, Lloyd J. / Wells, Martha J. M. / Ross, John J. / Fonoll, Xavier / Norton, John W. / Kuplicki, Stephen / Khan, Majid / Bell, Katherine Y. (2022): Per- and Polyfluoroalkyl Substances Presence, Pathways, and Cycling through Drinking Water and Wastewater Treatment. In: Journal of Environmental Engineering (ASCE), v. 148, n. 1 (Januar 2022).

    https://doi.org/10.1061/(asce)ee.1943-7870.0001943

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine