- A new formulation for predicting the ultimate capacities of FRP-confined concrete using advanced machine learning framework: Developed structural reliability analysis. Dans: Structures, v. 68 (octobre 2024). (2024):
- Two-stage framework for lateral-torsional buckling resistance prediction of cellular steel beams under fire conditions. Dans: Structures, v. 68 (octobre 2024). (2024):
- Machine learning-based Shapley additive explanations approach for corroded pipeline failure mode identification. Dans: Structures, v. 65 (juillet 2024). (2024):
- Application of machine learning approaches for modelling crack growth rates. Dans: ce/papers, v. 6, n. 3-4 (septembre 2023). (2023):
- Assessment of artificial intelligence‐ based techniques for the estimation of pile group scour depth. Dans: ce/papers, v. 6, n. 5 (septembre 2023). (2023):
- Predicting Wall Thickness Loss in Water Pipes Using Machine Learning Techniques. Dans: ce/papers, v. 6, n. 5 (septembre 2023). (2023):
- Scrutinizing the Performances of Hybrid ANN Models for Forecasting Condition of Bridges. Dans: ce/papers, v. 6, n. 5 (septembre 2023). (2023):
- A Novel Chaotic Optimization‐Oriented Model for Bridge Maintenance and Rehabilitation Planning. Dans: ce/papers, v. 6, n. 5 (septembre 2023). (2023):
- Metaheuristic‐based machine learning modeling of the compressive strength of concrete containing waste glass. Dans: Structural Concrete, v. 24, n. 4 (5 juillet 2023). (2023):
- Integrity of API 5L X56 Offshore Pipeline Subjected to Girth Weld Anomalies and Corrosion Using Probabilistic Methods. Dans: Journal of Performance of Constructed Facilities (ASCE), v. 36, n. 5 (octobre 2022). (2022):
- Random forest-based algorithms for accurate evaluation of ultimate bending capacity of steel tubes. Dans: Structures, v. 44 (octobre 2022). (2022):
- Sensitivity of reliability-based fatigue analysis to crack shape development in cracked pipeline. Dans: Procedia Structural Integrity, v. 22 ( 2019). (2019):
- Accurate Structural Reliability Analysis Using an Improved Line-Sampling-Method-Based Slime Mold Algorithm. Dans: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, v. 7, n. 2 (juin 2021). (2021):
- Modeling the nonlinear behavior of ACC for SCFST columns using experimental-data and a novel evolutionary-algorithm. Dans: Structures, v. 30 (avril 2021). (2021):