0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Assessment of artificial intelligence‐ based techniques for the estimation of pile group scour depth

Auteur(s): (Department of Civil Engineering, Faculty of Engineering University of Sistan and Baluchestan Zahedan 9816745845 Iran)
(Department of Civil Engineering and Energy Technology OsloMet—Oslo Metropolitan University Norway)
(Faculty of Architecture and Civil Engineering TU Dortmund University Germany)
(University of Natural Resources and Life Sciences Vienna Austria)
Médium: article de revue
Langue(s): anglais
Publié dans: ce/papers, , n. 5, v. 6
Page(s): 1105-1109
DOI: 10.1002/cepa.2037
Abstrait:

The scour phenomenon around piles is regarded as one of the main causes of serious damages to the pile‐supported structures such as bridges, jetties, wind turbines, and offshore platforms threatening their stability and sustainability in the long term. Thus, accurate forecast of scouring is vital for the design and operation of these structures. In this paper, three artificial intelligence‐based techniques including support vector regression, artificial neural network and random forest were applied to predict the local scour depth around pile groups. An experimental dataset is collected and used to construct the machine learning‐based models. The sediment number, shields parameter spacing, Keulegan‐Carpenter number and pile Reynolds number were used as input variables for the model development. Results assessment indicate that the artificial neural network model anticipated the highest performance among the three machine learning based models, with coefficient of determination of 0.97, and root mean square error of 0.15.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/cepa.2037.
  • Informations
    sur cette fiche
  • Reference-ID
    10766979
  • Publié(e) le:
    17.04.2024
  • Modifié(e) le:
    17.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine