-
Banerjee, J. R. (2024): Coupled axial-flexural buckling of shear deformable columns using an exact stiffness matrix. Dans: Computers & Structures, v. 298 (juillet 2024).
https://doi.org/10.1016/j.compstruc.2024.107349
-
Banerjee, J. R. (2024): An exact method for free vibration of beams and frameworks using frequency-dependent mass, elastic and geometric stiffness matrices. Dans: Computers & Structures, v. 292 (février 2024).
https://doi.org/10.1016/j.compstruc.2023.107235
-
Papkov, S. O. / Banerjee, J. R. (2022): Dynamic stiffness formulation for isotropic and orthotropic plates with point nodes. Dans: Computers & Structures, v. 270 (octobre 2022).
https://doi.org/10.1016/j.compstruc.2022.106827
-
Su, H. / Banerjee, J. R. (2005): Exact natural frequencies of structures consisting of two-part beam-mass systems. Dans: Structural Engineering and Mechanics, v. 19, n. 5 (mars 2005).
https://doi.org/10.12989/sem.2005.19.5.551
-
Liu, X. / Kassem, H. I. / Banerjee, J. R. (2016): An exact spectral dynamic stiffness theory for composite plate-like structures with arbitrary non-uniform elastic supports, mass attachments and coupling constraints. Dans: Composite Structures, v. 142 (mai 2016).
https://doi.org/10.1016/j.compstruct.2016.01.074
-
Liu, X. / Banerjee, J. R. (2015): An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies – Part II: Applications. Dans: Composite Structures, v. 132 (novembre 2015).
https://doi.org/10.1016/j.compstruct.2015.07.022
-
Liu, X. / Banerjee, J. R. (2015): An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies – Part I: Theory. Dans: Composite Structures, v. 132 (novembre 2015).
https://doi.org/10.1016/j.compstruct.2015.07.020
-
Pagani, A. / Carrera, E. / Banerjee, J. R. / Cabral, P. H. / Caprio, G. / Prado, A. (2014): Free vibration analysis of composite plates by higher-order 1D dynamic stiffness elements and experiments. Dans: Composite Structures, v. 118 (décembre 2014).
https://doi.org/10.1016/j.compstruct.2014.08.020
-
Fazzolari, F. A. / Banerjee, J. R. (2014): Axiomatic/asymptotic PVD/RMVT-based shell theories for free vibrations of anisotropic shells using an advanced Ritz formulation and accurate curvature descriptions. Dans: Composite Structures, v. 108 (février 2014).
https://doi.org/10.1016/j.compstruct.2013.08.037
-
Su, H. / Banerjee, J. R. / Cheung, C. W. (2013): Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Dans: Composite Structures, v. 106 (décembre 2013).
https://doi.org/10.1016/j.compstruct.2013.06.029
-
Fazzolari, F. A. / Boscolo, M. / Banerjee, J. R. (2013): An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies. Dans: Composite Structures, v. 96 (février 2013).
https://doi.org/10.1016/j.compstruct.2012.08.033
-
Fazzolari, F. A. / Banerjee, J. R. / Boscolo, M. (2013): Buckling of composite plate assemblies using higher order shear deformation theory—An exact method of solution. Dans: Thin-Walled Structures, v. 71 (octobre 2013).
https://doi.org/10.1016/j.tws.2013.04.017
-
Banerjee, J. R. / Ananthapuvirajah, A. (2019): Free flexural vibration of tapered beams. Dans: Computers & Structures, v. 224 (décembre 2019).
https://doi.org/10.1016/j.compstruc.2019.106106
-
Banerjee, J. R. / Ananthapuvirajah, A. (2019): Coupled axial-bending dynamic stiffness matrix for beam elements. Dans: Computers & Structures, v. 215 (avril 2019).
https://doi.org/10.1016/j.compstruc.2019.01.007
-
Banerjee, J. R. (2003): Free vibration of sandwich beams using the dynamic stiffness method. Dans: Computers & Structures, v. 81, n. 18-19 (août 2003).
https://doi.org/10.1016/s0045-7949(03)00211-6
-
Banerjee, J. R. / Su, H. / Jayatunga, C. (2008): A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings. Dans: Computers & Structures, v. 86, n. 6 (mars 2008).
https://doi.org/10.1016/j.compstruc.2007.04.027
-
Banerjee, J. R. / Su, H. (2004): Development of a dynamic stiffness matrix for free vibration analysis of spinning beams. Dans: Computers & Structures, v. 82, n. 23-26 (septembre 2004).
https://doi.org/10.1016/j.compstruc.2004.03.058
-
Liu, X. / Banerjee, J. R. (2016): Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method. Dans: Computers & Structures, v. 164 (février 2016).
https://doi.org/10.1016/j.compstruc.2015.11.005
-
Banerjee, J. R. (2013): Free vibration of beams carrying spring-mass systems − A dynamic stiffness approach. Dans: Computers & Structures, v. 114 (janvier 2013).
https://doi.org/10.1016/j.compstruc.2012.02.020
-
Boscolo, M. / Banerjee, J. R. (2013): Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part II: Results and applications. Dans: Computers & Structures, v. 114 (janvier 2013).
https://doi.org/10.1016/j.compstruc.2012.01.003
-
Boscolo, M. / Banerjee, J. R. (2013): Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory. Dans: Computers & Structures, v. 114 (janvier 2013).
https://doi.org/10.1016/j.compstruc.2012.01.002
-
Boscolo, M. / Banerjee, J. R. (2011): Dynamic stiffness elements and their applications for plates using first order shear deformation theory. Dans: Computers & Structures, v. 89, n. 3-4 (février 2011).
https://doi.org/10.1016/j.compstruc.2010.11.005
-
Su, H. / Banerjee, J. R. (2015): Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Dans: Computers & Structures, v. 147 (15 janvier 2015).
https://doi.org/10.1016/j.compstruc.2014.10.001
-
Banerjee, J. R. / Guo, S. / Howson, W. P. (1996): Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping. Dans: Computers & Structures, v. 59, n. 4 (mai 1996).
https://doi.org/10.1016/0045-7949(95)00307-x
-
Banerjee, J. R. / Su, H. (2006): Dynamic stiffness formulation and free vibration analysis of a spinning composite beam. Dans: Computers & Structures, v. 84, n. 19-20 (juillet 2006).
https://doi.org/10.1016/j.compstruc.2006.01.023
-
Banerjee, J. R. / Williams, F. W. (1992): Coupled bending-torsional dynamic stiffness matrix for timoshenko beam elements. Dans: Computers & Structures, v. 42, n. 3 (février 1992).
https://doi.org/10.1016/0045-7949(92)90026-v
-
Banerjee, J. R. (1998): Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method. Dans: Computers & Structures, v. 69, n. 2 (octobre 1998).
https://doi.org/10.1016/s0045-7949(98)00114-x
-
Banerjee, J. R. (1997): Dynamic stiffness formulation for structural elements: A general approach. Dans: Computers & Structures, v. 63, n. 1 (avril 1997).
https://doi.org/10.1016/s0045-7949(96)00326-4
-
Banerjee, J. R. / Williams, F. W. (1994): An exact dynamic stiffness matrix for coupled extensional-torsional vibration of structural members. Dans: Computers & Structures, v. 50, n. 2 (janvier 1994).
https://doi.org/10.1016/0045-7949(94)90292-5
-
Banerjee, J. R. / Jackson, D. R. (2013): Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution. Dans: Computers & Structures, v. 124 (août 2013).
https://doi.org/10.1016/j.compstruc.2012.11.010