0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Unified AI-Based Predictive Models for the Ultimate Capacity of Multi-Planar Gapped KK Steel Pipe Joints

Auteur(s): ORCID




Médium: article de revue
Langue(s): anglais
Publié dans: Civil Engineering Journal, , n. 3, v. 10
Page(s): 104-114
DOI: 10.28991/cej-sp2024-010-07
Abstrait:

The multi-planar steel pipe joints are widely used in communication towers, industrial structures, and offshore platforms. The current design formulas consider this joint as a uniplanar joint and account for the multi-planar effect using empirical correction factors. Recent studies deal with this multi-planar joint as a 3D joint but considering certain loading conditions. Hence, the aim of this research is to develop more general AI-based predictive models for the ultimate capacity of multi-planar gapped KK steel pipe joints, considering both symmetric and asymmetric loading conditions. Three AI techniques were applied to a database of previously published works. These techniques are “Genetic Programming” (GP), “Artificial Neural Network” (ANN), and “Evolutionary Polynomial Regression” (EPR). The prediction accuracies of the developed AI models were compared against two previously published formulas. The results indicated that the developed AI models are much more accurate than the previously published formulas. Also, the results showed that both the ANN and EPR models have almost the same level of accuracy (about 92%), but the EPR model has the advantage of presenting a closed-form equation that could be implemented either manually or using software. Doi: 10.28991/CEJ-SP2024-010-07 Full Text: PDF

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.28991/cej-sp2024-010-07.
  • Informations
    sur cette fiche
  • Reference-ID
    10789972
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine