0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Unified AI-Based Predictive Models for the Ultimate Capacity of Multi-Planar Gapped KK Steel Pipe Joints

Autor(en): ORCID




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Civil Engineering Journal, , n. 3, v. 10
Seite(n): 104-114
DOI: 10.28991/cej-sp2024-010-07
Abstrakt:

The multi-planar steel pipe joints are widely used in communication towers, industrial structures, and offshore platforms. The current design formulas consider this joint as a uniplanar joint and account for the multi-planar effect using empirical correction factors. Recent studies deal with this multi-planar joint as a 3D joint but considering certain loading conditions. Hence, the aim of this research is to develop more general AI-based predictive models for the ultimate capacity of multi-planar gapped KK steel pipe joints, considering both symmetric and asymmetric loading conditions. Three AI techniques were applied to a database of previously published works. These techniques are “Genetic Programming” (GP), “Artificial Neural Network” (ANN), and “Evolutionary Polynomial Regression” (EPR). The prediction accuracies of the developed AI models were compared against two previously published formulas. The results indicated that the developed AI models are much more accurate than the previously published formulas. Also, the results showed that both the ANN and EPR models have almost the same level of accuracy (about 92%), but the EPR model has the advantage of presenting a closed-form equation that could be implemented either manually or using software. Doi: 10.28991/CEJ-SP2024-010-07 Full Text: PDF

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.28991/cej-sp2024-010-07.
  • Über diese
    Datenseite
  • Reference-ID
    10789972
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine