0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Towards probabilistic data‐driven damage detection in SHM using sparse Bayesian learning scheme

Auteur(s): ORCID (State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
(State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
(State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
ORCID (National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch) and Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong)
(School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
(School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
(School of Mechanics, Civil Engineering and Architecture Northwestern Polytechnical University Xi'an China)
Médium: article de revue
Langue(s): anglais
Publié dans: Structural Control and Health Monitoring, , n. 11, v. 29
DOI: 10.1002/stc.3070
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/stc.3070.
  • Informations
    sur cette fiche
  • Reference-ID
    10685886
  • Publié(e) le:
    13.08.2022
  • Modifié(e) le:
    10.12.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine