0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Towards probabilistic data‐driven damage detection in SHM using sparse Bayesian learning scheme

Autor(en): ORCID (State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
(State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
(State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
ORCID (National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch) and Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong)
(School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
(School of Mechanics and Civil Engineering China University of Mining and Technology Xuzhou China)
(School of Mechanics, Civil Engineering and Architecture Northwestern Polytechnical University Xi'an China)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Control and Health Monitoring, , n. 11, v. 29
DOI: 10.1002/stc.3070
Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1002/stc.3070.
  • Über diese
    Datenseite
  • Reference-ID
    10685886
  • Veröffentlicht am:
    13.08.2022
  • Geändert am:
    10.12.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine