0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Towards high-precision data modeling of SHM measurements using an improved sparse Bayesian learning scheme with strong generalization ability

Auteur(s): ORCID (State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
(State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
(State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
ORCID (MOE Key Laboratory for Resilient Infrastructures of Coastal Cities, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China)
ORCID (Center of Safety Monitoring of Engineering Structures, Shenzhen Academy of Disaster Prevention and Reduction, China Earthquake Administration, Shenzhen, China)
ORCID (National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch) and Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong)
(MOE Key Laboratory for Resilient Infrastructures of Coastal Cities, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China)
(School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
(School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
(School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 1, v. 23
Page(s): 147592172311703
DOI: 10.1177/14759217231170316
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/14759217231170316.
  • Informations
    sur cette fiche
  • Reference-ID
    10730042
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    14.01.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine