0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Towards high-precision data modeling of SHM measurements using an improved sparse Bayesian learning scheme with strong generalization ability

Autor(en): ORCID (State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
(State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
(State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
ORCID (MOE Key Laboratory for Resilient Infrastructures of Coastal Cities, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China)
ORCID (Center of Safety Monitoring of Engineering Structures, Shenzhen Academy of Disaster Prevention and Reduction, China Earthquake Administration, Shenzhen, China)
ORCID (National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch) and Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong)
(MOE Key Laboratory for Resilient Infrastructures of Coastal Cities, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China)
(School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
(School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
(School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 1, v. 23
Seite(n): 147592172311703
DOI: 10.1177/14759217231170316
Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/14759217231170316.
  • Über diese
    Datenseite
  • Reference-ID
    10730042
  • Veröffentlicht am:
    30.05.2023
  • Geändert am:
    14.01.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine