Towards high-precision data modeling of SHM measurements using an improved sparse Bayesian learning scheme with strong generalization ability
Autor(en): |
Qi-Ang Wang
Yang Dai (State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China) Zhan-Guo Ma (State Key Laboratory for Geomechanics and Deep Underground Engineering & School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China) Jun-Fang Wang Jian-Fu Lin Yi-Qing Ni Wei-Xin Ren (MOE Key Laboratory for Resilient Infrastructures of Coastal Cities, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China) Jian Jiang (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China) Xuan Yang (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China) Jia-Ru Yan (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China) |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Structural Health Monitoring, Mai 2023, n. 1, v. 23 |
Seite(n): | 147592172311703 |
DOI: | 10.1177/14759217231170316 |
- Über diese
Datenseite - Reference-ID
10730042 - Veröffentlicht am:
30.05.2023 - Geändert am:
14.01.2024