Three-Dimensional Reconstruction of Tunnel Face Based on Multiple Images
Auteur(s): |
Wenge Qiu
Liao Jian Yunjian Cheng Hengbin Bai |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-11 |
DOI: | 10.1155/2021/8837309 |
Abstrait: |
The current geological sketch in tunnel engineering is mainly based on sketches of workers. However, geological sketch drawn by workers always offers fundamental data purely due to its drawing mode. A novel drawing method for geological sketch has been introduced using multiview photos in this process. The images of tunnel faces are taken from multiple angles, and every two pictures have overlaps. By measuring the distance between the camera and the tunnel face using a laser range finder, the photographic scale of each photo can be confirmed. SpeededUp Robust Features (SURF) is a good practice for detecting feature points, and the sparse point cloud is reconstructed from multiview photos by structure from motion (SFM). However, the sparse point cloud is not suitable for analysis for structural planes due to its sparsity. Therefore, patch-based multiview stereo (PMVS) is used to reconstruct dense point cloud from the sparse point cloud. After 3D reconstruction, the details of the tunnel face are recorded. The proposed technique was applied to multiview photos acquired in the Xiaosanxia railway tunnel and Fengjie tunnel in Chongqing, China. In order to record the geological conditions of the tunnel face quickly and accurately, Chengdu Tianyou Tunnelkey has developed a set of software and hardware integration system called CameraPad. Besides, CameraPad was used to collect the multiview photos of the tunnel face in the No. 1 Xinan railway tunnel in Jilin, China. By comparing with traditional and existing methods, the proposed method offers a more reductive model for geological conditions of the tunnel face. |
Copyright: | © Wenge Qiu et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
5.13 MB
- Informations
sur cette fiche - Reference-ID
10604192 - Publié(e) le:
26.04.2021 - Modifié(e) le:
02.06.2021