• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Three-Dimensional Aerodynamic Optimization of Single-Layer Reticulated Cylindrical Roofs Subjected to Mean Wind Loads

Auteur(s):


Médium: article de revue
Langue(s): en 
Publié dans: Advances in Civil Engineering, , v. 2019
Page(s): 1-13
DOI: 10.1155/2019/4156319
Abstrait:

This paper presents a procedure to optimize the rise-to-span ratio of single-layer reticulated cylindrical roofs to improve their aerodynamic performance, by coupling the optimization method with computational fluid dynamics (CFD) and finite element analysis (FEA). Four turbulence models (standard k-ε, RNG k-ε, SST k-ω, and RSM) were used to predict the mean wind loads on cylindrical roofs. The simulation results were compared with wind tunnel data, and the RSM turbulence model was employed. The aim of this paper is to determine the best performing rise-to-span ratio of cylindrical roofs based on the gradient algorithm. Two objective functions were considered to minimize the highest mean suction on the roof surface and the maximum response displacement of the single-layer reticulated cylindrical shell subjected to mean wind loads. The results revealed that a cylindrical roof with a rise-to-span ratio (R/S) of 1/6.25 seems to be most effective in attenuating high suctions on the roof surface. In addition, a single-layer reticulated cylindrical shell with R/S = 1/5.5 gives the best performance in reducing the maximum response displacement against wind loads.

Copyright: © Bingbing San et al. et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10365044
  • Publié(e) le:
    24.08.2019
  • Modifié(e) le:
    06.10.2019