Study of Damage Quantification of Concrete Drainage Pipes Based on Point Cloud Segmentation and Reconstruction
Auteur(s): |
Gaozhao Pang
Niannian Wang Hongyuan Fang Hai Liu Fan Huang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 18 janvier 2022, n. 2, v. 12 |
Page(s): | 213 |
DOI: | 10.3390/buildings12020213 |
Abstrait: |
The urban drainage system is an important part of the urban water cycle. However, with the aging of drainage pipelines and other external reasons, damages such as cracks, corrosion, and deformation of underground pipelines can cause serious consequences such as urban waterlogging and road collapse. At present, the detection of underground drainage pipelines mostly focuses on the qualitative identification of pipeline damage, and it is impossible to quantitatively analyze pipeline damage. Therefore, a method to quantify the damage volume of concrete pipes that combines surface segmentation and reconstruction is proposed. An RGB-D sensor is used to collect the damage information of the drainage pipeline, and the collected depth frame is registered to generate the pipeline’s surface point cloud. Voxel sampling and Gaussian filtering are used to improve data processing efficiency and reduce noise, respectively, and the RANSAC algorithm is used to remove the pipeline’s surface information. The ball-pivoting algorithm is used to reconstruct the surface of the segmented damage data and pipe’s surface information, and finally to obtain the damage volume. In order to evaluate, we conducted our research on real-world materials. The measurement results show that the method proposed in this paper measures an average relative error of 7.17% for the external damage volume of concrete pipes and an average relative error of 5.22% for the internal damage measurements of concrete pipes. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
8.82 MB
- Informations
sur cette fiche - Reference-ID
10657745 - Publié(e) le:
17.02.2022 - Modifié(e) le:
01.06.2022