0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Research on Real-Time Energy Consumption Prediction Method and Characteristics of Office Buildings Integrating Occupancy and Meteorological Data

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 15
Page(s): 404
DOI: 10.3390/buildings15030404
Abstrait:

A method based on Long Short-Term Memory (LSTM) networks is proposed to forecast hourly energy consumption. Using an office building in Shanghai as a case study, hourly data on occupancy, weather, and energy consumption were collected. Daily energy consumption was analyzed using single-link clustering, and days were classified into three types. The key input variables significantly influencing energy consumption, solar radiation, occupancy, and outdoor dry bulb temperature are identified by the Pearson correlation coefficient. By comparing five algorithms, it was found that the LSTM model performed the best. After considering the occupancy, the hourly MAPE was reduced from 11% to 9%. Accuracy improvements for each day type were noted as 1% for weekdays, 4% for Saturday, and 7% for Sunday. Further analysis indicated that the model started to predict the time (1:00) and commute time (7:00 and 17:00) with large errors. The model was optimized by varying the time step. For the times 1:00, 7:00, and 17:00, the best optimization of the model was achieved when the time step values were set to 6 h, 24 h, and 18 h with an MAPE of 3%, 6%, and 5%, respectively. As the model time step increased (≤2 weeks), the accuracy of the model decreased to 6%.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10815999
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine