0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Research for Pedestrian Steel Bridge Design of Neural Network in Structural Model Updating

Auteur(s):
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Shock and Vibration, , v. 2022
Page(s): 1-11
DOI: 10.1155/2022/1057422
Abstrait:

The application of the neural network method in health monitoring and structural system identification has received extensive attention. A reasonable neural network structure is very important for its performance. This paper takes the pedestrian bridge of the Xingfu intersection in Urumqi, China, as the research object and uses MIDAS/Civil to establish a finite element analysis model. Taking the natural vibration frequency obtained from the dynamic test of the actual bridge as the target, two kinds of neural networks are used to predict the structural material parameters. An appropriate bridge model correction method is selected by comparing the prediction results of the BP neural network and the GRNN. The test results show that the pedestrian bridge model based on MIDAS/Civil has a high accuracy, but it still does not meet the actual needs. The modified model based on the BP neural network is close to the actual measured results, and a more accurate finite element analysis model can be established by this method, which makes the modified model closer to the real stress state of the structure.

Copyright: © 2022 Rui Zhao, Yuhang Wu, Zehua Feng
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10676118
  • Publié(e) le:
    28.05.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine