0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Research for Pedestrian Steel Bridge Design of Neural Network in Structural Model Updating

Autor(en):
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Shock and Vibration, , v. 2022
Seite(n): 1-11
DOI: 10.1155/2022/1057422
Abstrakt:

The application of the neural network method in health monitoring and structural system identification has received extensive attention. A reasonable neural network structure is very important for its performance. This paper takes the pedestrian bridge of the Xingfu intersection in Urumqi, China, as the research object and uses MIDAS/Civil to establish a finite element analysis model. Taking the natural vibration frequency obtained from the dynamic test of the actual bridge as the target, two kinds of neural networks are used to predict the structural material parameters. An appropriate bridge model correction method is selected by comparing the prediction results of the BP neural network and the GRNN. The test results show that the pedestrian bridge model based on MIDAS/Civil has a high accuracy, but it still does not meet the actual needs. The modified model based on the BP neural network is close to the actual measured results, and a more accurate finite element analysis model can be established by this method, which makes the modified model closer to the real stress state of the structure.

Copyright: © 2022 Rui Zhao, Yuhang Wu, Zehua Feng
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10676118
  • Veröffentlicht am:
    28.05.2022
  • Geändert am:
    01.06.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine