• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Representing Small Commercial Building Faults in EnergyPlus, Part II: Model Validation

Auteur(s):





Médium: article de revue
Langue(s): en 
Publié dans: Buildings, , n. 12, v. 9
Page(s): 239
DOI: 10.3390/buildings9120239
Abstrait:

Automated fault detection and diagnosis (AFDD) tools based on machine-learning algorithms hold promise for lowering cost barriers for AFDD in small commercial buildings; however, access to high-quality training data for such algorithms is often difficult to obtain. To fill the gap in this research area, this study covers the development (Part I) and validation (Part II) of fault models that can be used with the building energy modeling software EnergyPlus® and OpenStudio® to generate a cost-effective training data set for developing AFDD algorithms. Part II (this paper) first presents a methodology of validating fault models with OpenStudio and then presents validation results, which are compared against measurements from a reference building. We discuss the results of our experiments with eight different faults in the reference building (a total of 39 different baseline and faulted scenarios), including our methodology for using fault models along with the reference building model to simulate the same faulted scenarios. Then, we present validation of the fault models by comparing results of simulations and experiments either quantitatively or qualitatively.

Copyright: © 2019 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10385581
  • Publié(e) le:
    24.11.2019
  • Modifié(e) le:
    24.11.2019