• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Representing Small Commercial Building Faults in EnergyPlus, Part I: Model Development

Auteur(s):



Médium: article de revue
Langue(s): en 
Publié dans: Buildings, , n. 11, v. 9
Page(s): 233
DOI: 10.3390/buildings9110233
Abstrait:

Small commercial buildings (those with less than approximately 1000 m² of total floor area) often do not have access to cost-effective automated fault detection and diagnosis (AFDD) tools for maintaining efficient building operations. AFDD tools based on machine-learning algorithms hold promise for lowering cost barriers for AFDD in small commercial buildings; however, such algorithms require access to high-quality training data that is often difficult to obtain. To fill the gap in this research area, this study covers the development (Part I) and validation (Part II) of fault models that can be used with the building energy modeling software EnergyPlus® and OpenStudio® to generate a cost-effective training data set for developing AFDD algorithms. Part I (this paper) presents a library of fault models, including detailed descriptions of each fault model structure and their implementation with EnergyPlus. This paper also discusses a case study of training data set generation, representing an actual building.

Copyright: © 2019 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10380530
  • Publié(e) le:
    15.11.2019
  • Modifié(e) le:
    15.11.2019