Representing Small Commercial Building Faults in EnergyPlus, Part I: Model Development
Autor(en): |
Janghyun Kim
Stephen Frank James E. Braun David Goldwasser |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 31 Oktober 2019, n. 11, v. 9 |
Seite(n): | 233 |
DOI: | 10.3390/buildings9110233 |
Abstrakt: |
Small commercial buildings (those with less than approximately 1000 m² of total floor area) often do not have access to cost-effective automated fault detection and diagnosis (AFDD) tools for maintaining efficient building operations. AFDD tools based on machine-learning algorithms hold promise for lowering cost barriers for AFDD in small commercial buildings; however, such algorithms require access to high-quality training data that is often difficult to obtain. To fill the gap in this research area, this study covers the development (Part I) and validation (Part II) of fault models that can be used with the building energy modeling software EnergyPlus® and OpenStudio® to generate a cost-effective training data set for developing AFDD algorithms. Part I (this paper) presents a library of fault models, including detailed descriptions of each fault model structure and their implementation with EnergyPlus. This paper also discusses a case study of training data set generation, representing an actual building. |
Copyright: | © 2019 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
6.99 MB
- Über diese
Datenseite - Reference-ID
10380530 - Veröffentlicht am:
15.11.2019 - Geändert am:
02.06.2021