0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Reinforcement learning‐based trajectory planning for continuous digging of excavator working devices in trenching tasks

Auteur(s): (Key Laboratory of CNC Equipment Reliability Ministry of Education School of Mechanical and Aerospace Engineering Jilin University Changchun China)
(Third Department Xi'an Aerospace Propulsion Testing Technology Research Institute Xi'an China)
(Key Laboratory of CNC Equipment Reliability Ministry of Education School of Mechanical and Aerospace Engineering Jilin University Changchun China)
(Key Laboratory of CNC Equipment Reliability Ministry of Education School of Mechanical and Aerospace Engineering Jilin University Changchun China)
(Key Laboratory of CNC Equipment Reliability Ministry of Education School of Mechanical and Aerospace Engineering Jilin University Changchun China)
(Key Laboratory of CNC Equipment Reliability Ministry of Education School of Mechanical and Aerospace Engineering Jilin University Changchun China)
(College of Mechanical and Vehicle Engineering Taiyuan University of Technology Taiyuan China)
Médium: article de revue
Langue(s): anglais
Publié dans: Computer-Aided Civil and Infrastructure Engineering
DOI: 10.1111/mice.13428
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1111/mice.13428.
  • Informations
    sur cette fiche
  • Reference-ID
    10815171
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine