0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Quantitative Damage Prediction for Composite Laminates Based on Wave Propagation and Artificial Neural Networks

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 1, v. 4
Page(s): 57-66
DOI: 10.1177/1475921705049747
Abstrait:

Targeted at an online health monitoring technique for in-service composite structures, a Lamb wave propagation-based deterioration assessment approach is developed using an artificial neural network (ANN) algorithm and a PZT transducer network. Structural dynamic responses are numerically simulated using three-dimensional FEM analyses, and signal characteristics are then extracted with a Signal Processing and Interpretation Package (SPIP) in terms of the wavelet transform technique. A damage parameters database (DPD) is constructed to accommodate the extracted wave spectrographic characteristics, and adopted for ANN training under the supervision of an error-backpropagation neural algorithm. The validity of this methodology is evaluated by identifying through-hole-type damages in [45/45/0/90]s quasi-isotropic CF/EP (T650/F584) laminates. The results exhibit excellent quantitative prediction for damage in the CF/EP composites, including position, geometric identity, and orientation. Additionally, the dependence of ANN performance on inherent network configurations is also evaluated.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921705049747.
  • Informations
    sur cette fiche
  • Reference-ID
    10561501
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    26.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine